Effects of varying torques can be accrued

Linear impulse

$$\Delta J_{\mathrm{F},x} \approx \sum_{k} F_{x,k} \Delta t$$

is the signed area "under" the plot of F_x vs. t.

For AP Physics C,

$$\Delta J_{\mathrm{F},x} = \int_{t=t_i}^{t=t_f} F_x \, \mathrm{d}t$$

Work done by a force

$$\Delta W_{\rm F} pprox \sum_{k} F_{\parallel,k} \Delta \ell$$

is the signed area "under" the plot of F_{\parallel} vs. ℓ .

For AP Physics C,

$$\Delta W_{\rm F} = \int_{\ell=\ell_i}^{\ell=\ell_f} F_{\parallel} \, \mathrm{d}\ell$$

Angular impulse

$$au_{\text{AVG}} \sum_{k} \Delta t \approx \sum_{k} au_{k} \Delta t$$

is the signed area "under" the plot of τ vs. t.

For AP Physics C,

$$\tau_{\text{AVG}}(t_f - t_i) = \int_{t=t_i}^{t=t_f} \tau \, dt$$

Work done by a torque

$$\Delta W_{\tau} pprox \sum_{k} \tau_{k} \Delta \theta$$

is the signed area "under" the plot of τ vs. θ .

For AP Physics C,

$$\Delta W_{\tau} = \int_{\theta = \theta_{i}}^{\theta = \theta_{f}} \tau \, \mathrm{d}\theta$$

